Designing for Collaborative CoLocated Multi-Display Environments

Summary \& Learning goals

The students are introduced to the concept of Multi-display environments (MDE), i.e., the coupling of several displays together to form a shared interactive environment. The concept is described through a taxonomy categorising MDE:s and illustrative cases.

Learning goals:

- recognize multi-display environments (MDE:s)
- describe relevant factors influencing the design of MDE:s
- analyse the design of MDE:s.
- reflect on the potential consequences of MDE:s for collaborative interaction.

Recommended readings

- F. Garcia-Sanjuan, J. Jaen and V. Nacher, Toward a General Conceptualization of Multi-Display Environments, Frontiers in ICT 2016 Vol. 3, https://www.frontiersin.org/article/10.3389/fict.2016.00020
- Weiser, M. (1991). The Computer for the 21 st Century. Scientific American, 265(3), 94-105. http://www.jstor.org/stable/24938718

Contents

- The Computer for the 21st centrury
- Definition - Multi-Display Environment
- Examples
- A taxonomy describing properties of MDE:s
- Perspectives
- Topology
- Coupling
- Interaction
- Case 4in1
- Summary

The Computer for the 21st century

"Prototype tabs, pads and boards are just the beginning of ubiquitous computing. The real power of the concept comes not from any one of these devices - it emerges from the interaction of all of them"

Mark Weiser, 1991

30+ year old idea of combining several displays allowing new possibilities

The Computer for the 21st century

- Ubiquitous Computing
- Computing everywhere
- From 1 person 1 device
- To 1 person many devices
- All interacting
- Collaborative
- Picture from 1991
- Many different experiments have been carried out
- One-device-one-display-one-user still dominating context
- Do you agree?

Multi-Display Environments

"Prototype tabs, pads and boards are just the beginning of ubiquitous computing. The real power of the concept comes not from any one of these devices - it emerges from the interaction of all of them"

Mark Weiser, 1991

30+ year old idea of combining several displays allowing new possibilities

Multi-Display Environments

- "we consider as a multi-display or multi-surface environment a ubiquitous interactive computing system composed of several displays (or surfaces) with digital content that are located in the same physical space and have a "coupling" relationship to each other, the users interacting with the system, and the objects used for this purpose. The way surfaces are arranged and coupled determines how users perceive them as a whole, and how interactions should happen."
- Coupling - binding of 2 or more entities to provide a set of functions they cannot provide indivdually

Garcia-Sanjuan, F., et al. (2016). Toward a General Conceptualization of Multi-Display Environments.

Multi-Display Environments

- Break down
- Interactive computing system
- Several displays
- Showing digital content
- Located in the same physical space
- Coupling relationship
- Displays
- Users
- Objects used for interaction
- As a whole - an interactive environment

Garcia-Sanjuan, F., et al. (2016). Toward a General Conceptualization of Multi-Display Environments.

Examples

- A - Several monitors
- B - Composite display
- C - Advanced office
- D - Meeting room
- E - Linked mobiles

Nacenta, M. A., Gutwin, C., Aliakseyeu, D., \& Subramanian, S. (2009). There and Back Again: Cross-Display Object Movement in Multi-Display Environments. Human-Computer Interaction, 24(1-2), 170-229.

Mapping out Multi-Display Environments (MDE:s)

- A taxonomy of MDE:s
- Maps out the design space
- Description of MDE:s along 3 perspectives
- Topology
- Coupling
- Interaction

MDE Taxonomy

Topology Perspective

Describes the dimensions relative to the physical appearance of the MDE.

- Homogeneity - homogeneous, heterogeneous
- Spatial form - planar, volumetric
- Shape regularity - regular, irregular
- SIzE - inch, foot, yard, perch, chain
- Mobility - fixed, mobile
- Scalability - bounded, unbounded

Example

- Topology
- Homogeneity - homogeneous
- Spatial form - planar
- Shape regularity - irregular
- Size - yard

Coupling Perpective

Describes the dimensions related to how the displays inte the MDE connect to each other.

- Creation - implicit, manual, assisted, automatic
- Mutability - static, dynamic
- Logical View - discrete, redundant, extended-continuous, extended-discontinuous
- Privacy - private, personal, public

Example

- Topology
- Homogeneity - heterogeneous
- Spatial form - volumetric
- Shape regularity - regular
- Size - perch
- Coupling
- Mutability - static
- Logical View - redundant

Interaction Perspective

Describes the available interaction modes once the devices have been organized and coupled together

- Interaction availability - inexistent, partial, total
- Input directness - direct, indirect
- Interaction medium - on-device, around-device
- Interaction instruments - body-based, surface-based, tangible
- tangible includes e.g., mice and keyboards
- Input Continuity - punctual, gestural

Example

- Topology
- Homogeneity - homogeneous
- Spatial form - volumetric
- Shape regularity - irregular
- Size - foot
- Interaction
- Interaction Availability - total
- Input Directnesss - direct
- Interaction Medium - on-device
- Interaction Instruments - surface-based
- Input Continuity - punctual, gestural

Siftables: https://www.youtube.com/watch?v=vbwzBBHtNGI

Why is the Taxonomy Useful?

- Analysis \& Ideation
- Analysis
- Categorize
- Compare
- ...
- Ideation
- Provide ideas
- Pick dimensions from the perspectives and ideate
- E.g., planar, foot, on-device or volumetric, yard, tangible

4in1 Activities - a collaborative MultiDisplay Environment

- A 4in1 activity is defined as an application involving 4 participants that play out on 4 tablets coupled together to form one large display
- Can function as a low-cost tabletop solution

4 in1 - Bursting the Mobile Bubble

- Use tablets to do things together
- Laser Lunacy
- Course project
- Bachelor thesis

- Movie
- https://www.youtube.com/watch?v=5uSsxILu1zk\&feature=youtu.be

Design of 4in1 Activities

- 4 co-located participants
- The spatial organisation of tablets induces expecations of shared use
- All participants have the focus on the same object (the tablets)
- A shared goal is established between the participants
- Assymetry between particpants in terms of different capabilities can be used giving them different roles but the efforts of all participants are accounted for and valued
- The design should encourage human-human interaction between participants

Analysis of 4in1 Using the Framework

Perspective	Dimension	State(s)
$\begin{aligned} & \text { 仓̀ } \\ & \text { O} \\ & \text { O} \\ & \stackrel{\circ}{\circ} \end{aligned}$	Homogenity	homogeneous
	Spatial Form	planar
	Shape Regularity	regular
	SIze	foot,yard
	Mobility	mobile
	Scalability	bounded
$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	Creation	assisted
	Mutability	static
	Logical View	extended-continuous
	Privacy	public
	Interaction availability	total
	Input Directness	direct
	Interaction Medium	on-device
	Interaction Instruments	surface-based
	Input Continuity	punctual, gestural

Topology

Persp ective	Dimension	State(s)
	HomOGENITY	homogeneous
	SPATIAL FORM	planar
0	SHAPE REGULARITY	regular
0	SIZE	foot,yard
	MobILITY	mobile
	SCALABILITY	bounded

Coupling

Perspec tive	Dimension	State(s)
$\begin{aligned} & \text { 을 } \\ & \frac{1}{1} \\ & 0 \end{aligned}$	Creation	assisted
	Mutability	static
	Logical View	extended-continuous

Interaction

Persp ective	Dimension	State(s)
	Privacy	public
	Interaction AVAILABILITY	total
	Input Directiness	direct
	INTERACTION Medium	on-device
	INTERACTION INSTRUMENTS	surface-based
	Input Continuity	punctual, gestural

Reflection

- Take a few minutes to reflect on the collaborative MDE 4in1
- Some things to discuss:
- Is there a potential in combining devices?
- Can you think of a scenario for
- Work?
- Leisure?
- Weiser saw this kind of use of combined displays 30 years ago
- Was he right?
- What will it be 30 years from now?

4in1 Sample Applications

- So far Games
- StringForce (1)
- Subventure (2)
- QuadroPong (3)

StringForce

- Shared goal - catch coins \& avoid bombs
- Collaborative action - move ring by pulling and releasing rope
- Coordination through verbal communication
- Symmetrical interaction
- All players have the same skills
- Fast-paced

Subventure

- Shared goal - collect trash
- Collaborative action - move submarine using controls
- Coordination through verbal communication
- Assymetrical interaction- each person has one task
- Medium paced

Quadropong

- Shared goal - clear the board
- No collaborative action
- Order and resources matter
- Coordination through verbal communication
- Explores interdependency between players' actions

Summary

- Combining many different devices is on old idea
- Many different experiments have been carried out
- One-device-one-display-one-user still dominating context
- Taxonomy helps organising analysis and ideation
- Topology
- Coupling
- Interaction
- 4in1 Activities one concrete example
- Alternative low-cost tabletop
- Fully realizable using existing technologies
- Endless possibilities

References

- Barendregt, W., Börjesson, P., Eriksson, E., \& Torgersson, O. (2017). StringForce: A Forced Collaborative Interaction Game for Special Education. In Proceedings of the 2017 Conference on Interaction Design and Children (IDC '17). Association for Computing Machinery, New York, NY, USA, 713-716. https://doi.org/10.1145/3078072.3091987
- Garcia-Sanjuan, F., Jaen, J., \& Nacher, V. (2016). Toward a General Conceptualization of Multi-Display Environments. Frontiers in ICT, 3. doi:10.3389/fict.2016.00020
- Eriksson, E., Petersen, J. O., Bagge, R., Kristensen, J. B., Lervig, M., Torgersson, O., \& Baykal, G. E. (2022). Quadropong - Conditions for Mediating Collaborative Interaction in a Co-located Collaborative Digital Game using Multi-Display Composition. In Adjunct Proceedings of the 2022 Nordic Human-Computer Interaction Conference (NordiCHI '22). Association for Computing Machinery, New York, NY, USA, Article 25, 1-2. https://doi.org/10.1145/3547522.3547721.
- Weiser, M. (1991). The Computer for the 21 st Century. Scientific American, 265(3), 94105. http://www.jstor.org/stable/24938718

雨
 tedco

Thanks for listening

Disclaimer: The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

